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Abstract

A radiative heat transfer code based on the discrete ordinates method applied to unstructured grids has been developed to
with a finite volume CFD code for combustion applications. The constraints are that: (1) Accurate coupling with a finite volume C
requires that the output is the integrated radiative source term within each mesh; (2) The resulting computation times must remain
within the combustion requirements (of the order of an hour for realistic industrial geometries); (3) the line spectra of combusti
must be accurately represented across the whole infrared range. Here, gaseous line spectra properties are represented with the Sck model
using narrow bands parallelization. The radiative transfer equation is discretized with a finite volume approach and three scheme
(“exponential”, “step” and “diamond mean flux”) in terms of accuracy and computational requirement. They are first tested for a
gray cases, solutions being compared to reference solutions provided by the Ray Tracing Method and the Monte Carlo Method. Th
of the three schemes is also discussed for a spherical geometry, using an analytical solution in order to perform a parametric s
absorption optical thickness influence in a wide range typical of spectral line gaseous radiation. Final tests involving a complete w
spectrum are performed in order to test the effects of preceding conclusions in terms of expected accuracies for combustion appli
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

In computational fluid dynamics (CFD), the coupling b
tween radiative heat transfer and combustion is base
the resolution of the energy equation. The heat source
due to radiation is evaluated by taking into account the t
perature and radiating species concentration profiles, w
are obtained from the solution of the aerothermochemi
equations. Among all the numerical methods develope
calculate the radiative heat transfer, the finite volume met
(FVM) and the discrete ordinates method (DOM) offer go
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compromises between accuracy and computational req
ments. These approaches have been widely used to
radiative transfer problems in structured three-dimensio
geometries using Cartesian or cylindrical coordinates
particular, the DOM, described by Chandrasekhar in 1
[1], has been deeply studied by Lathrop and Carlson in
70’s [2] and by Truelove, Fiveland and Jamaluddin in
80’s [3–7]. Significant improvements have been achieve
the last decade aiming at the reduction of the ray eff
and false scattering, more accurate quadratures and th
tension to complex geometries. Nevertheless, the coup
between radiative transfer and other physical phenom
such as combustion and fluid flow at high temperatures
quires the solution of the radiative transfer equation us
the same grid employed to solve the other governing e

tions.
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Nomenclature

A surface area . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

A∆ surface area of cell orthogonally planned
following si . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

Dij scalar product ofsi by nj

G incident radiation . . . . . . . . . . . . . . . . . . . W·m−2

I radiation intensity . . . . . . . . . . . . . . . . W·m−2·sr
Ndir number of discrete directions
Nface number of faces of cells
Qw net heat flux at the wall . . . . . . . . . . . . . . W·m−2

R radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
Sr radiative source term . . . . . . . . . . . . . . . . W·m−3

T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
V volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m3

Iin averaged intensity over entries . . . . . W·m−2·sr
Iout averaged intensity over exit faces . . W·m−2·sr
Qr radiative heat flux vector . . . . . . . . . . . . W·m−2

n unit vector normal to the face
s discrete direction unit vector
fv soot volumetric fraction
h height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
lmax maximum thickness of a cell . . . . . . . . . . . . . . m
s coordinate along directions
t optical pathlength through a cell . . . . . . . . . . . m

w weight associated to a discrete direction

Greek symbols

α weighting factor for mean flux scheme
ε emissivity
κ absorption coefficient . . . . . . . . . . . . . . . . . . m−1

µ, η, ξ director cosines of the discrete direction
ν wave number . . . . . . . . . . . . . . . . . . . . . . . . . m−1

Σ surface area delimiting a volume . . . . . . . . . m2

τ absorption optical thickness
Ω solid angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sr

Subscripts

A beginning point of a pathway through a cell
B ending point of a pathway through a cell
b blackbody
i associated toith discrete direction of the

angular quadrature
j associated toj th face of the cell
k associated tokth entry of the cell
l associated tolth exit face of the cell
P associated to the volume of the cell
w wall
x, y, z Cartesian coordinates
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Unstructured grids are often used in CFD owing to th
geometrical flexibility. In this way, a lot of work has bee
developed during the last decade to apply the DOM-F
to non-orthogonal structured grids and unstructured g
in three-dimensional enclosures [8–11,15]. In particu
Sakami and co-workers proposed an accurate method
the spatial discretization by taking into account the ex
nential extinction [12–14], but it necessitates to perfo
a heavy preprocessing procedure. Much less sophistic
schemes are also commonly used. Liu et al. [15] have u
the “step” scheme, equivalent of the “upwind” scheme
CFD and Ströhle et al. [17] have proposed the mean
interpolation scheme. Another type of spatial discretiza
was also recently introduced, namely the Discrete Ordin
Interpolation Method (DOIM), which does not rely upo
an integration of the radiative transfer equation over
control volumes, but rather on the integration of the eq
tion along a line of sight. This method has been introdu
by Seo et al. in 1998 [18] and extended to unstructu
grids by Cha et al. in 2000 [19]. Lastly, Koo et al. [2
have compared three methods applied to two-dimensi
curved geometries: the DOIM, Sakami’s approach and
discrete ordinates method in orthogonal curvilinear coo
nates [21].

In our study, a computer code using unstructured me
and based on the modeling of radiative transfer using

DOM has been developed aiming at a future coupling with a
combustion finite volume code available at the CERFAC1

in France. The code has been specially written for unst
tured grids using tetrahedrical cells, by trying to avoid co
plex adaptations that are highly time consuming. The c
straints associated to combustion applications where the
lowing:

(1) Accurate coupling with a finite volume CFD code r
quires that the output is the integrated radiative sou
within each mesh;

(2) The resulting computation time must remain accepta
for realistic industrial geometries in combustion;

(3) The line spectra of combustion gases must be accur
represented across the whole infrared range.

Then, to treat general combustion situations, even if the m
part of this paper is devoted to gray media, all these c
straints lead to the following choices:

(1) Gaseous line spectra properties are represented w
Statistical Narrow Bandcorrelated-kmodel and paral
lelization is used to simultaneously compute the rad
tive contribution of each narrow band;

1 Centre Européen de Recherche et de Formation Avancée en Calcu

entifique.
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(2) For eachcorrelated-kcomputation the radiative tran
fer equation is discretized with a finite volume approa
(in order to avoid additional computational efforts wh
coupling with the finite volume combustion code) a
three spatial differencing schemes are considered:
ponential” [13], “step” [15] and “diamond mean flux
[17].

The performances of the different spatial discretizat
schemes have already been widely investigated in cas
simple geometries mapped using Cartesian coordinates
there is a lack of information regarding the performance
these schemes with unstructured grids. In the present s
after some theoretical derivations (Section 2), we ana
the behavior of the three retained schemes on academic
figurations (Section 3). Results are compared with accu
solutions that are analytical or produced by the Ray Trac
Method. In this analysis convergence difficulties are ide
fied in the limit of strong absorption optical thicknesses.

These difficulties are further analyzed using a parame
study to cover the wide range of absorption optical thi
nesses typical of spectral line gaseous radiation. A partic
attention is given to the standard finite volume approxim
tion and its convergence difficulties at high absorption
tical thicknesses, independently of the spatial differenc
scheme. We then consider configurations with real gas
line spectra for the whole infrared range in order to expl
the effect of such convergence difficulties for combust
applications. This last case, with a complete H2O line spec-
trum, allows to draw first conclusions and to comment
the validity range of three spatial differencing schemes
combustion applications.

2. The radiative transfer equation (RTE)

2.1. Mathematical formulation

Considering an absorbing-emitting and non-scatte
gray medium, the variation of the radiative intensity alo
a line of sight can be written as:

dI (s)
ds

= κIb − κI (s) (1)

whereI (s) is the radiative intensity,Ib the radiative intensity
of the blackbody, andκ the absorption coefficient. Bounda
conditions for diffuse surfaces are taken from the rela
giving the intensity leaving the wallIw as a function of the
blackbody intensity of the wallIb,w and of the incident ra
diative intensity:

Iw(s) = εwIb,w + 1− εw

π

∫
n.s′<0

Iw(s′)|n.s′|dΩ ′ (2)

whereεw is the wall emissivity,n the unit vector normal to
the wall ands′ the direction of propagation of the incide

radiation confined within a solid angle dΩ ′.
f
t

,

-

2.2. Angular discretization

The DOM is based on the discretization of the radia
transfer equation (RTE) according to a chosen numberNdir
of discrete directions,si (µi, ηi, ξi) associated with their re
spective weightswi , contained in the solid angle 4π . In this
way, different angular discretizations can be used. A re
study carried out by Koch and Becker [22] compares
efficiency of several types of angular quadratures widely
side the most common ones. In this study, we choose thSN

quadrature, which is one of the most popular and, in orde
estimate the role of ray effect, some tests are performed
theLC11 quadrature as recommended by Koch and Bec

2.3. Spatial discretization for unstructured grids

The RTE is solved for every discrete directionsi using
a finite volume approach. The integration of the RTE o
the volumeV of an element limited by a surfaceΣ , and the
application of the divergence theorem yield:∫
Σ

I (si ).si .n dΣ =
∫
V

(
κIb − κI (si )

)
dV (3)

We assume thatIb andI (si ) are constant over the volum
V and equal to their respective averaged value:Ib,P and
IP (si ). We also assume that the intensities at the faces
constant over each face andIj denotes the intensity at th
j th face. For unstructured grids, the domain is discretize
tetrahedra and every other hybrid grid can be under-me
by tetrahedra. Then, for tetrahedra, Eq. (3) is discretized

Nface=4∑
j=1

Ij (si ).(si .nj )Aj = κV
(
Ib,P − IP (si )

)
(4)

wherenj is the exit unit vector normal to the surfacej .
The scalar product of theith discrete direction vector wit

the normal vector of thej th face of the considered tetrah
dron is defined byDij :

Dij = si .nj = µinxj + ηinyj + ξinzj (5)

The discretization of the boundary condition (Eq. (2))
straightforward:

Iw = εwIb,w + 1− εw

π

∑
n.si<0

wiI (si )|n.si | (6)

For each cell, the incident radiationG is evaluated as fol
lows:

G =
∫
4π

I (si )dΩ �
Ndir∑
i=1

wiIP (si ) (7)

For a gray medium, the divergence of the radiative heat
Sr is given by

Sr = ∇.Qr = κ(4πIb − G) (8)
and the radiative net heat flux at the wall is calculated by
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Qw � ε

(
πIb,w −

∑
n.si<0

wiI (si )|n.si |
)

(9)

For the three different spatial differencing schemes used,
culations ofI (si ) are detailed in the next sections.

2.3.1. The exponential scheme
Sakami et al. proposed in 1998 [13,14] a sophistica

spatial scheme for three-dimensional cases that takes
account the exponential extinction along the optical path
into the cell. Considering an optical patht = sB − sA, where
sA andsB are respectively the positions at the entry and
the exit of the cell, the solution of the RTE (Eq. (1)) can
written as

I (s, sB) = I (s, sA)e−κt + κ

sB∫
sA

Ibe
−κ(sB−s) ds (10)

The integration over the cell pathlength leads to

I (s, sB) = I (s, sA)e−κt + (
1− e−κt

)
Ib (11)

For a directionsi and a final positionsB at the exit face, the
positionsA at the entry and the associated pathlengtht are
fixed. The intensityIl going through an exit facel is defined
as the averaged intensity over thelth face:

Il = 1

Al

∫ ∫
Al

[
I (si , sA)e−κt + Ib

(
1− e−κt

)]
dAl (12)

It has been shown in [13] that, knowingτi = κlmax,i , where
lmax,i stands for the maximum thickness of the cell for
directionsi , for the three different types of events presen
in Fig. 1, one can calculate intensityIl at an exit face as
follows:

Il =
( ∑

k
Dik<0

Alk

Al

Ik

)
χi + Ib(1− χi) (13)

whereAl is the exit surface area,Alk stands for the part o
surface area of the downstream facel obtained by projec
tion of the upstream facek on the facel according tosi and
χi is a typical coefficient that accounts for the exponen
extinction through the cell:

χi = 1

Al

∫
Al

e−κt dAl = 2

τi

(
1− 1− e−τi

τi

)
(14)

The difficulty lies in the calculation of the geometric ma
mum thicknesslmax,i for all the cases presented in the Fig.
lmax,i can be determined if we know the coordinates of
points A and B. By referring to Eq. (4),IP is directly de-
duced:

IP = Ib,P − 1

κV

Nface=4∑
j=1

DijAj Ij (15)

Whereas this scheme avoids negative values for allIj at cell
faces, it does not guaranty thatIP is positive at the center o

each cell, in particular whenκ becomes very small.
Fig. 1. Six ways to cross a tetrahedrical cell from A to B according to
number of entries and exit faces.

2.3.2. The step scheme
Much less sophisticated schemes are also available

are worth a detailed attention in our specific context. C
sidering our constraints in terms of computational times,
use of the exponential scheme will indeed be only justi
if it insures significantly higher accuracy levels for co
bustion applications. In 2000 [15], J. Liu used the “ste
scheme, which corresponds to the “Upwind” scheme
is commonly used in CFD. This scheme had already b
proposed by Chai et al., in 1995 [9], in order to solve
RTE by the FVM for irregular geometries using curvili
ear coordinates. In previous studies, this scheme has
been applied to Cartesian structured grids, in order to a
negative values that could occur with schemes such a
“diamond” one [16]. Omitting the scattering phenomen
the intensityIP is evaluated at the center of the cell by a
plying:

IP =
[
κV Ib −

Nface∑
j=1

Dij <0

DijAj Ij

]/[
κV +

Nface∑
j=1

Dij >0

DijAj

]

(16)
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whereNface is the number of faces for the cell (equal to 4
our case). The downstream surface intensities are set e
to the intensityIP .

2.3.3. The mean flux scheme
In a similar way, Ströhle et al. [17] proposed a sim

spatial differencing scheme based on the mean flux sch
that can be very useful in the case of unstructured grids.
scheme relies on the following formulation:

IP = αIout + (1− α)Iin (17)

whereIin andIout are the cell face averaged intensities
tering (white cell faces in Fig. 2) and leaving (gray cell fa
in Fig. 2) the control volume, respectively:

Iin =
[ ∑

j
Dij <0

DijAj Ij

]/[ ∑
j

Dij <0

DijAj

]
(18)

and

Iout =
[ ∑

j
Dij >0

DijAj Ij

]/[ ∑
j

Dij >0

DijAj

]
(19)

SubstitutingIin from Eq. (17) into Eq. (4) yields, after som
algebra:

IP =
[
αV κIb − Θ

∑
j

Dij <0

DijAj Ij

]

/[
ακV +

∑
j

Dij >0

DijAj

]
(20)

with

Θ = α − (1− α)

[ ∑
j

Dij >0

DijAj

]/[ ∑
j

Dij <0

DijAj

]
(21)

As shown in Fig. 2, if we consider that the scalar productDij

is the transformation term of the projection of the surfa
Fig. 2. Geometrical transformation linked to the termDij .
l
Aj , following the vectorsi , on the plane∆ orthogonal to
this last vector, we can write:∑

j
Dij >0

DijAj = −
∑
j

Dij <0

DijAj = A∆ (22)

Then for allα in ]0,1], we haveΘ = 1 and finally, Eq. (20)
takes the following form:

IP =
[
αV κIb −

∑
j

Dij <0

DijAj Ij

]/[
ακV +

∑
j

Dij >0

DijAj

]

(23)

The caseα = 1 corresponds to the Step scheme (Eq. (1
used by Liu et al. [15]. The caseα = 0.5 will be called
diamond mean flux scheme (DMFS). It can be compa
to the diamond scheme used in structured grids but it
been shown that the DMFS used in structured grid is dif
ent from the standard diamond scheme because of the
flux approximation [17]. It is formally more accurate th
the step scheme. After calculation ofIP from Eq. (20), the
radiation intensities at cell faces such thatDij > 0 are set
equal toIout, obtained from Eq. (17). It can occur that th
last term calculated is negative.Iout negative is equivalent t
the following conditions:

Ib,P <

(
(1− α) − A∆

κV

)
.Iin (24)

2.4. Sweeping order optimization

For a given discrete direction, each plane face of each
is either an upstream face or a downstream face (a face
allel to the considered discrete direction plays no role).
control volumes should be treated following a sweeping
der such as the radiation intensities at upstream cell f
are known. This order depends on the discrete direction
der consideration. An algorithm for the optimization of t
sweeping order has been implemented in the present w
To order the cells, we have to define first the directionsi . To
proceed to the ordering, the grid is swept a first time in
arbitrary order with checking, for each cell, if the numb
of upstream faces where the intensity is known is the s
as the number of upstream faces. If this condition is sa
fied for one cell, the number of this cell is stored in a list
the directionsi . Then, the intensity of the downstream c
faces can be known, as the upstream cell faces of the
cells which are updated. We should notice that this swe
ing order stored for each discrete direction, only depend
the chosen grid and the angular quadrature. That mean
the use of different physical parameters do not change
established list of the sweeping order. A sweeping order
timization avoids too many iterations not only for the ca
with scattering media and/or reflective walls geometries,
also avoids iteration in the case of black walled enclosu

without scattering.



856 D. Joseph et al. / International Journal of Thermal Sciences 44 (2005) 851–864

ng
par-
hav

in-
the
iven
in-

ls or

ate
heat

ls

flux
ode
de-

o
. 3)
one

ame

cing
eous
are

he

e
s on
see
ted
lu-

al
ec-
ation
ing
the
racy
ob-
ray

ck-
ally
the
he
of
an-

see
ood
sing
ase
ions
OM
of
t of
hort
that
ed in
(a)
will
ima-
tter
ac-
ent
long
t in-
pare

rce
dif-

ints.

he
rthe-
e”

eme
for
3. Results and discussion

To compare the efficiency of the spatial differenci
schemes for different types of enclosures containing a
ticipating and homogeneous medium, several test cases
been carried out.

It should be pointed out that for output purposes an
terpolation is performed on the results obtained with
unstructured code, in order to have the values for a g
axis or a given point. This 3D-interpolation can generate
accuracies, especially for the points taken near the wal
when the grid is coarse.

3.1. Application to a black walled cylindrical enclosure

This test concerns the cylindrical geometry to illustr
the influence of the angular quadrature on the radiative
flux at the walls.

A cylinder (h = 3 m andR = 0.5 m) containing a gray
isothermal medium atT = 1200 K is considered. The wal
are black and atTw = 300 K. The radiative heat sourceSr

along the axis of the cylinder and the radiative net heat
Qw at the side wall are obtained with the unstructured c
using the three different spatial discretization schemes
scribed previously and theS8 quadrature is employed. Tw
unstructured grids are used in this test case (see Fig
A coarse one comprises 4000 tetrahedra and a finer
210 000 tetrahedra. A third comparison is made on the s
fine grid using a more accurate angular discretization(S12).
Results are compared to those obtained with the ray tra
method using 320 000 rays. In the case of a homogen
isothermal medium, the results of the ray tracing method
independent of the grid.

Two different values for the absorption coefficient of t
medium have been chosen to represent weak(κ = 0.1 m−1)

and strong(κ = 10.0 m−1) optical thicknesses. It should b
noticed that the optical thickness of the cells also depend
the grid refinement. In the case of optically thin media (
Fig. 4), the peak of the net heat flux at the wall predic
by the DOM is about 10% lower than the ray tracing so
Fig. 3. Cylindrical enclosure grid.
e

.

tion. This is due to the fact that the distribution of optic
thicknesses in the medium is function of the angular dir
tion and consequently needs a good angular represent
(what can be linked to the well known ray effect). Increas
the order of the angular quadrature (Fig. 4(c)) improves
accuracy of the results. However, such an order of accu
is compatible with today’s expectations in combustion pr
lems. For stronger optical thicknesses (see Fig. 5), the
effect is softened. The aforesaid distribution of optical thi
nesses is less sensitive to angular variation. For optic
thick media, the increase of the absorption coefficient of
medium yields also an increase of the wall heat flux. T
walls receive the radiation mainly from the closest cells
the medium, so there is no need to refine the grid and the
gular discretization. In the case of optically thin media (
Fig. 4), the radiative heat source term solutions are in g
agreement. Refining the grid gives better results. Increa
the absorption coefficient of the medium leads to decre
the accuracy obtained for the radiative source term solut
(see Fig. 5(a)). The relative difference between the D
and the ray tracing solutions is negligible in the vicinity
the walls and becomes significant far from the walls. Mos
the energy emitted by the medium is absorbed within a s
distance. That leads to a strong exponential extinction
none of the three spatial differencing schemes succeed
representing if the grids are not sufficiently fine (Figs. 4
and 5(a)). So, in the next section, a particular attention
be paid to the accuracy on the radiative source term est
tion in a simpler configuration. The step scheme gives be
results in optically thin case and the DMFS is the most
curate for very absorbing medium. The angular refinem
does not really govern the accuracy of the source term a
the centerline. We have noticed that the grid refinemen
fluence is stronger than the angular one when we com
the three spatial differencing schemes.

Maximal, mean and minimal relative errors for the sou
term given in Tables 1 and 2 are computed for the three
ferent spatial differencing schemes as follows

E =
∣∣∣∣Sr,DOM − Sr,RT

Sr,RT

∣∣∣∣ × 100 (25)

and for the wall heat flux:

E =
∣∣∣∣Qw,DOM − Qw,RT

Qw,RT

∣∣∣∣ × 100 (26)

with RT standing for the ray tracing.EMean is simply the av-
eraged values of relative errors calculated at several po
For an intermediate value ofκ (κ = 1.0 m−1), the errors are
also provided in the two tables.

For the wall heat flux, the solutions computed with t
three numerical schemes are in a good agreement. Neve
less, we can notice that the “Diamond Mean Flux Schem
gives significantly better results than the exponential sch
for κ = 10.0 m−1. The DMFS remains accurate enough

a large range of optical thicknesses.
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Fig. 4.Qw on the side wall andSr on the central axis forκ = 0.1 m−1 of a cylindrical enclosure with participating gray medium: (a) Unstructured coarse
(18 920 cells) and angular quadratureS8; (b) Unstructured fine grid (140 010 cells) and angular quadratureS8; (c) Unstructured fine grid (140 010 cells) an
angular quadratureS12.
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3.2. Accuracy levels for combustion applications: The h
absorption limit under the finite volume approximation

The preceding academic test cases have pointed ou
difficulties commonly encountered with such numerical
proaches: the ray effect and the convergence difficultie
the optically thick absorption limit. Ray effects are ve
much dependent on the geometry of the system and
only be reduced by the increase of the number of disc

directions. As far as the optically thick absorption limit is
concerned, two remarks can be drawn that motivate fur
discussions in the present section:

(1) One would expect that the sophisticated exponen
scheme lead to better convergence quality than the
ple step scheme and the DMFS; which is not the cas
the black walled cylindrical enclosures case.

(2) High absorption optical thicknesses are very commo
encountered in combustion at the center of CO2 and

H2O infrared absorption lines, which raises the question
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(a)

(b)

(c)

Fig. 5.Qw on the side wall andSr on the central axis forκ = 10.0: (a) Unstructured coarse grid (18 920 cells) and angular quadratureS8; (b) Unstructured

fine grid (140 010 cells) and angular quadratureS8; (c) Unstructured fine grid (140 010 cells) and angular quadratureS12.
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of the general meaning of DOM-FVM computations f
combustion applications.

In the present section, we argue that the converge
difficulties at the high absorption limit are intrinsically a
sociated with the finite volume approximation and that,
reasons related to spectral correlation effects, accurate r
tive heat source fields can be produced with such meth
for combustion applications despite of extreme absorp
encountered in CO2 and H2O lines centers, in meter sca

configurations.
-

3.2.1. Black walled spherical enclosure: A parametric
study of the optical thickness influence

To analyze in more details the trends identified h
above, this new section presents a simple test case w
provides an analytical solution (of the source term only
order to further understand, via a parametric study, the in
ence of the optical thickness on the source term calculati
In this test case, a sphere with a radiusR = 1 m has been
considered and two different grids have been used (Fig
a coarse one (18 920 cells) and very fine one (140

cells).
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In a first case, the medium is isothermal atTmax= 1200 K
and the wall is black atTmin = 300 K. In a second tes
case, wall conditions are identical but the temperature o
medium is depending on the space variabler as follows:

T (r) = (
T 4

max

(
1− r2) + T 4

minr
2)1/4 (27)

The source termSr,C is evaluated at the center of the sph
using aS12 quadrature with the three different spatial diffe
Fig. 6. Spherical enclosure grid.
encing schemes studied in the previous section. Result
compared to the analytical solution obtained considering
spherical symmetry:

Sr,C,analytical= 4πκ

[
Ib −

(
Ib,we−κR + κ

R∫
0

Ibe
−κr dr

)]

(28)

The relative error of the radiative source term is represe
versusκ in Fig. 7 and is computed as follows:

E =
∣∣∣∣Sr,C,DOM − Sr,C,analytical

Sr,C,analytical

∣∣∣∣ × 100 (29)

From Fig. 7, we can notice that the relative error increa
when the absorption coefficient increases. The change o
rection of the curve, in Fig. 7(b) and (d), is only due to t
use of the absolute value in the relative error formulation (
Eq. (29)). In the isothermal test case, extremely poor le
of accuracy are observed when increasing optical thick
(Fig. 7(a) and (c)). That phenomenon could be interpre
as the “false scattering” effect (numerical diffusion linked
cell optical thickness) with the use of the finite volume a
proximation. This observation can be related to the fact t
in numerical experiments, the geometrical mesh struc
is kept constant when increasing the absorption coeffic
leading to a regular increase of the optical thickness of e

mesh. For the non-isothermal case, the same phenomenon

.67%
.88%
.83%

.64%
5.2%
.10%

.52%

.07%
.99%

%

Table 1
Relative Errors on the radiative source termSr

Absorption coefficient κ = 0.1 m−1 κ = 1.0 m−1 κ = 10.0 m−1

Relative errors EMax EMean EMin EMax EMean EMin EMax EMean EMin

Coarse mesh andS8 Step scheme 0.56% 0.096% 0.0024% 3.78% 2.60% 0.51% 328% 219% 7
Expon. scheme 0.45% 0.16% 0.0023% 4.37% 3.07% 0.06% 240% 151% 3
Diam. scheme 0.35% 0.26% 0.045% 5.12% 3.55% 0.029% 112% 56.4% 2

Fine mesh andS8 Step scheme 0.42% 0.11% 0.0095% 2.14% 0.95% 0.016% 111% 88.4% 6
Expon. scheme 0.35% 0.077% 0.0004% 1.89% 1.18% 0.076% 72.2% 57.3%
Diam. scheme 0.27% 0.081% 0.0018% 2.21% 1.44% 0.46% 43.6% 21.2% 3

Fine mesh andS12 Step scheme 0.17% 0.037% 0.0006% 1.83% 1.15% 0.14% 111% 88.3% 5
Expon. scheme 0.17% 0.092% 0.033% 2.26% 1.41% 0.65% 71.9% 57.2% 4
Diam. scheme 0.24% 0.15% 0.03% 2.71% 1.67% 0.33% 43.6% 21.2% 1

Table 2
Relative Errors on the radiative heat flux at the wallQw

Absorption coefficient κ = 0.1 m−1 κ = 1.0 m−1 κ = 10.0 m−1

Relative errors EMax EMean EMin EMax EMean EMin EMax EMean EMin

Coarse mesh andS8 Step scheme 11.0% 7.39% 4.46% 8.91% 3.79% 0.40% 4.55% 0.78% 0.41%
Expon. scheme 10.9% 7.29% 4.58% 9.78% 3.13% 0.44% 5.20% 0.98% 0.26%
Diam. scheme 10.8% 7.18% 4.72% 10.7% 2.45% 0.12% 7.15% 0.61% 0.077%

Fine mesh andS8 Step scheme 7.78% 5.92% 2.64% 3.72% 1.94% 0.55% 2.33% 0.61% 0.23%
Expon. scheme 7.73% 5.86% 2.58% 3.31% 1.60% 0.68% 2.66% 0.44% 0.15%
Diam. scheme 7.67% 5.80% 2.51% 2.99% 1.25% 0.26% 3.80% 0.28% 0.058%

Fine mesh andS12 Step scheme 6.69% 4.57% 2.54% 2.90% 1.17% 0.62% 2.50% 0.50% 0.054%
Expon. scheme 6.63% 4.51% 2.48% 2.49% 0.83% 0.23% 3.40% 0.56% 0.0037
Diam. scheme 6.57% 4.45% 2.42% 2.88% 0.50% 0.0006% 4.58% 0.73% 0.27%
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Fig. 7. Relative Error forSr,C at the center of the sphere: (a) For the isothermal gray medium case using the coarse grid; (b) For the non-isothe
medium case using the coarse grid; (c) For the isothermal gray medium case using the fine grid; (d) For the non-isothermal gray medium case u
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occurs but radiative exchanges at small distances (excha
between closest gas volumes) contribute more than the
changes with the walls. This reduces the optical thickne
effectively linked to the most contributing exchanges. C
sequently, false scattering has less influence and the re
error on the radiative source term is smaller than the
obtained in the isothermal test case. These errors re
however very high when optical thickness reaches value
the order of ten or above, which is commonly encountere
the center of gaseous absorption lines such as those of2O
and CO2 in combustion.

3.2.2. Finite volume approaches in the optically thick
absorption limit

The preceding parametric study has indicated that st
errors are to be expected when increasing the cell absor
optical thickness, whatever the numerical scheme am
the three considered ones. This seems in contradiction
the fact that the exponential scheme solves the RTE ex
within each tetrahedrical cell in 3D, or triangular cell in 2
However, when analyzing this point in detail, it appears t

the error is entirely associated with the standard finite vol-
s
-

Fig. 8. Simplified configuration.

ume approximation that the intensity is uniform across
upstream face.

This may be seen in the following simple bidimensio
case (Fig. 8): an isothermal gray medium of thicknessh and

absorption coefficientκ (the blackbody intensity beingIb),
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between two parallel isothermal black walls of surfaceS (the
blackbody intensity beingIb,w). Let us assume that we wa
to estimate the integrated intensityIf,total impinging at the
surface in a direction�si orthogonal to the two parallel su
faces. The analytical solution is:

If,total =
∫
S

If dS = If .S (30)

with

If = Ib,we−κh + κ

h∫
0

Ibe
−κr dr = Ib,we−τ + Ib

(
1− e−τ

)
(31)

whereτ = κh is the absorption optical thickness. Whatev
the considered numerical scheme, this geometry requ
that the field is divided in at least two triangular cells (C
and (C2), as indicated in Fig. 8. The numerical resolut
will therefore include the computation of the averaged
tensityIint at the interface between (C1) and (C2).

The analytical expression ofIint can be easily shown t
be:

Iint = Ib,wχ + Ib(1− χ) (32)

whereχ for a two-dimensional system becomes [12]:

χ = (
1− e−τ

)
/τ (33)

Note that those expressions corresponds to Eqs. (13) and
which indicates that the exponential scheme computesIint
exactly from the knowledge of a uniform intensityIb,w at
the upstream face of (C1), and a uniform emission within
cell. And indeed, the upstream intensity is uniform (emiss
by the isothermal black surface) and the volume emissio
uniform (isothermal medium). At this stage, everything
mains therefore exact with a sophisticated enough nume
scheme.

However, things are very different if we now consid
(C2) to compute the averaged downstream intensityIf from
the knowledge of the averaged upstream intensityIint. As
no further information is available, the common finite v
ume approximation consists in assuming that the inten
is distributed uniformly along the upstream face. Under
assumption, the analytical expression ofIf may be shown
to be (again, this is what the exponential scheme gives
a uniform intensity at the upstream face as it is exact wi
each cell):

If = Iintχ + Ib(1− χ) = Ib,wχ2 + Ib

(
1− χ2) (34)

This expression is approximate. It only matches Eq. (31
the optically thin limit. Therefore whatever the quality of t
spatial integration scheme, an error will occur at the optic
thick limit that is due to the lack of information concernin
the distribution of the intensity along the upstream face.
illustration, at the two points A and B reported on the Fig
the intensity is arbitrarily set toIint = Ib,wχ + Ib(1 − χ)
whereas its exact value is respectivelyIA = Ib,w andIB =
)

l

Ib,we−τ + Ib(1 − e−τ ). The resulting solutions and ass
ciated errors are represented in Fig. 9 as function of
absorption optical thicknessτ for two test cases:

Case1 (transmission):Ib = 0 etIb,w = 1;
Case2 (emission/self-absorption):Ib = 1 etIb,w = 0.

What these figures tell us when looking at the curves lab
“exponential” is the accuracy loss due to the finite volu
approximation itself. In the present configuration this is
actly what the exponential scheme would give because
exponential scheme is exact within each cell. We have
reported in the same figures solution and relative errors (
Eq. (29)) resulting of the finite volume approximation co
bined with the simple approximate step and diamond m
flux schemes.

The first comment is that the convergence difficulties
high optical thicknesses are mainly due to the finite volu
approximation itself and not to the quality of the nume
cal schemes. Concerning, the emission and self-absor
modelling, the finite volume approximation is justified wh
the medium becomes very thick and the error onIf de-
creases (Fig. 9(b) and (d)). However at such optical th
nesses, the DMFS gives unrealistic negative values forIint
which leads to an increasing error on the final intensity
none of the three numerical schemes succeed in mode
the transmission (very small values forIf ).

As a conclusion, we can notice from Fig. 9(a) and (c) th

• as long as the DMFS does not calculate negative in
sities (for Iint), it gives the most accurate approxima
solution,

• for intermediate optical thicknesses(10−1–10+1), the fi-
nite volume approximation introduces important inac
racies in the different numerical schemes (see Fig.
and (c)).

3.2.3. Accuracy levels associated to finite volume
approximations for line spectra of combustion gases

We have seen that even with high accuracy or exact
tial integration schemes, the usual finite volume approxi
tion itself introduces high uncertainties at the limit of o
tically thick absorption. A last test case is considered h
which is close to combustion applications, in order to sh
how the problems encountered at high optical thicknesse
the centers of gaseous spectral lines) may affect the accu
of the radiative source term in a real combustion gas.
same unity sphere as above is meshed with 30 000 tet
dra and filled with an isothermal gas containing water va
and nitrogen. The spectral dependency of the absorption
efficient is here represented with the use of aSNB-ckmodel
[23–25]. TheSNBdata have been provided by the EM2
laboratory [26]. The source termSr is obtained by comput
ing Nbands× Nquad gray calculations whereNbands= 367 is
the number of narrow bands which have the same spe

width, and for each narrow bandNquad= 5 is the number of
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(a) (b)

(c) (d)

Fig. 9. Comparison between the four expressions ofIf (k) and the relative error for the three differencing schemes: (a) Transmission modelling:If (k);

(b) Transmission modelling: Relative error; (c) Emission/self-absorption modelling:If (k); (d) Emission/self-absorption modelling: Relative error.
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Gauss–Legendre quadrature points used in the approx
tion of the spectral integration. Then, the analytical solut
integrated over the whole spectrum is written as:

Sr,C,analytic=
Nband∑
i=1

Nquad∑
j=1

4π∆νiwij κij e
−κij R

× (Ib,C,ij − Ib,w,ij ) (35)

Consequently, using the DOM, the source term [27] is
tained as follows:

Sr,DOM =
Nband∑
i=1

Nquad∑
j=1

∆νiwij κij (4πIb,ij − Gij ) (36)

whereGij is obtained from Eq. (7) forκ = κij .
To study the effect of the angular quadrature on the e

mation ofSr,C , the relative error has been computed acco
ing to Eq. (29) in a first configuration withXH2O = 0.2 and
XN2 = 0.8. S4, S8, S12 andLC11 [22] have been tested u
ing the DMFS scheme and for each quadrature, the rela
error is about 1.2%.

Consequently, theS4 quadrature is chosen and the relat
error of the source term is computed for the three num

ical schemes (with the parameterXH2O varying). Fig. 10
-represents the relative error versus the molar concentr
of water vapor. As we noticed previously, the relevant
rameter that influences the solution accuracy is the o
cal thickness which is directly related to the water va
molar fractionXH2O. The sensitivity of the solution accu
racy to the molar fraction of water vapor is illustrated
Fig. 10(a). For small molar fractions(X = 0.01), the ex-
ponential scheme could not provide an acceptable phy
solution because of the sign of the intensityIp which be-
comes negative. A very small discrepancy between the t
schemes is observed, with a relatively better accuracy o
DMFS. Altogether, the accuracy level is much better th
what could be expected on the basis of preceding anal
As the medium is isothermal, the radiative exchanges w
the walls are the only relevant ones. They occur at a l
distance, which means that the exchanges correspondi
low absorption coefficients contribute more than the on
high values where extinction rapidly takes place. Finally,
last figure Fig. 10(b) deals with a very thick medium whe
soot particles are added to water vapor and nitrogen, ta
into account a very high soot volumetric fractionfv = 10−5.
The total absorption coefficient is expressed by
κij = κij,gas+ κi,soot (37)
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sothermal
(a) (b)

Fig. 10. Relative Error forSr,C at the center of the sphere using the medium grid: (a) Case of the isothermal gaseous medium; (b) Case of the i

mixture of gas and soot.
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with [28]:

κi,soot= 5.5fvνi (38)

wherefv stands for the soot volumetric fraction andνi is the
wave number taken at the center of a narrow band. As
radiation becomes dominant, the medium tends to bec
thick and gray. Then, the results obtained in Fig. 10(b) sh
big discrepancies between the three schemes which co
the trends of the relative error forSr observed in the firs
cylinder test case and a good behavior of the DMFS. In
case, because of the gray behavior of soot in each na
band, each absorption coefficient is increased at the s
level and leads to optically thick media. All the frequenc
contribute similarly to the estimation of the exchange w
the wall, consequently we can use similar explanations
those presented in the gray case.

Altogether, these results only confirm the good beha
of the code giving satisfactory accuracy levels for well mix
combustion chambers, where the gas volume can be co
ered as quasi-isothermal, with intermediate soot conce
tion levels. It has been shown in the previous section t
for non-isothermal media, the main exchanges contribu
to the radiative source term evaluation are the excha
with the gas at short or intermediate distance. Therefor
final interesting test case considering the spherical enclo
containing non-isothermal and non-gray medium is ne
sary but is not presented here because no analytical sol
along the radius is available. A Monte Carlo calculation
presently being performed, that will serve as a reference
lution for an extension of the present analysis.

4. Concluding remarks

A DOM code using unstructured grids has been de
oped for coupling with finite volume CFD-combustion co
and has been validated using academic test cases. This

emphasizes the influence of the absorption optical thickness
-

y

on the accuracy level. We could then show that the diffic
ties encountered at high optical thicknesses were assoc
with the standard finite volume approximation where the
tensity is distributed uniformly along each upstream fa
These difficulties are therefore quite independent of the
phistication level of the spatial differencing scheme. In p
ticular, for such applications as combustion ones, where
constraints in term of computational times are strong, it
pears that there is no particular needs for a very accu
but complex scheme such as the exponential scheme,
sidering that a simple scheme such as the DMFS ins
comparable accuracy levels up to intermediate optical th
nesses and encounter the same strong difficulties at the
absorption limit.

These strong difficulties could lead to believe that st
dard finite volume approximations are useless in the c
bustion context where strong absorption commonly app
at the center of infrared CO2 and H2O absorption lines. Para
metric test cases were considered to check this point a
appeared that when real gas spectra are considered for
grated radiation computations, much less difficulties are m
in terms of accuracy, than what could be expected on the
sis of the conclusions of the gray medium analysis.

This conclusion could only be drawn for well mixed com
bustion chambers and the cases with strongly heterogen
temperature fields require further analysis.

For such heterogeneous cases, significant short dist
radiative exchanges may appear in optically thick spec
regions. As soon as such exchanges play a significant
the standard finite volume approximation will lead to stro
errors. It will therefore be required that some informatio
are kept concerning the distribution of the intensity along
upstream faces. These ideas have been explored by se
authors with the finite element approach where the inten
is stored at each nodes (at the cell vertices), which is the
ter start basis for the description of its distribution along
face [29–31]. These techniques have been shown to be
efficient at the limit of strong optical thicknesses. It would

worth looking at their behavior in the limit of high absorp-
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tion optical thicknesses for combustion applications. Ho
ever, in the short term, considering today’s computatio
constraints in this field, such approaches could only be c
sidered for computational accurate reference solutions
not for coupling with finite volume CFD-combustion code
In the long term, it would certainly be of great interest to
and combine Sakami’s exponential scheme with such fi
element approaches.
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